====== Theory ====== Overview -------- In this section the theoretical model is summarized, a detailed description is presented in the initial FLUNED paper (`De Pietri et al., 2023 `_). The concentration of a radioactive species :math:`N_\alpha` is treated as a passive scalar that does not alter the underlying flow or transport processes. In addition, only radioisotopes generated by single-step reactions and with constant parent concentration are considered. With these assumptions, the equations implemented in the FLUNED solver are reported here. Governing Conservation Equation ------------------------------- .. math:: :label: eq1 \frac{\partial N_\alpha}{\partial t} + \nabla \!\cdot\! \bigl(\mathbf{U}\,N_\alpha\bigr) \;=\; \nabla \!\cdot\!\bigl(D_\alpha\,\nabla N_\alpha\bigr) + S_\alpha(N,\phi) * :math:`\mathbf{U}` - coolant velocity vector * :math:`D_\alpha` - molecular diffusivity of species :math:`\alpha` * :math:`S_\alpha` - volumetric source term (neutron interactions + decay) Reynolds Decomposition ---------------------- The Reynolds decomposition for turbulent flows is considered: .. math:: :label: eq2 N_\alpha(\mathbf{x},t) \;=\; \langle N_\alpha \rangle \;+\; N_\alpha' By substituting (2) in (1) gives: .. math:: :label: eq3 \frac{\partial\langle N_\alpha\rangle}{\partial t} + \nabla\!\cdot\!\bigl(\langle\mathbf{U}\rangle\,\langle N_\alpha\rangle\bigr) + \nabla\!\cdot\!\langle \mathbf{u}' N_\alpha' \rangle \;=\; \nabla\!\cdot\!\bigl(D_\alpha\,\nabla\langle N_\alpha\rangle\bigr) + \langle S_\alpha(N,\phi)\rangle Turbulent Closure - Gradient Diffusion Hypothesis ------------------------------------------------- .. math:: :label: eq4 \langle \mathbf{u}' N_\alpha' \rangle \;=\; -\,D_t\,\nabla\langle N_\alpha\rangle \;=\; -\,\frac{\nu_t}{\mathrm{Sc}_t}\;\nabla\langle N_\alpha\rangle * :math:`D_t` - turbulent diffusivity * :math:`\nu_t` - turbulent viscosity * :math:`\mathrm{Sc}_t \approx 0.7` - turbulent Schmidt number * Valid only under isotropic-turbulence assumptions. General Source Term ------------------- .. math:: :label: eq5 \sum_{i\neq\alpha} (\langle\phi\sigma\rangle_{i\rightarrow\alpha} + \lambda_{i\rightarrow\alpha})\,N_i(t) \;-\; \sum_{i\neq\alpha} (\langle\phi\sigma\rangle_{\alpha\rightarrow i} + \lambda_{\alpha\rightarrow i})\,N_\alpha(t) * First (positive) sum - production of :math:`\alpha` from parents :math:`i`. * Second (negative) sum - loss of :math:`\alpha` via decay or transmutation. * :math:`\lambda_{x\rightarrow y}` - instantaneous decay constant. * :math:`\langle\phi\sigma\rangle` - neutron-flux-weighted reaction rate. Simplified Source Term (Single-Step Transmutation + Decay) ---------------------------------------------------------- Under the study's assumptions (constant parent isotopes, single-step generation + decay): .. math:: :label: eq6 \langle S_\alpha(N,\phi)\rangle \;=\; \mathrm{RR}_\alpha(\phi)\;-\;\lambda_\alpha N_\alpha * :math:`\mathrm{RR}_\alpha` - neutron-induced reaction rate producing isotope :math:`\alpha`. * :math:`\lambda_\alpha` - decay constant of :math:`\alpha`. Laminar-Flow Limit ------------------ For laminar regimes, (3) reduces to (1) with * :math:`D_t = 0 \quad (\nu_t = 0)` * all variables in their instantaneous form (no ensemble averaging).